Experimental $P-T-\rho$ and Enthalpy-Increment Measurements of Trichlorofluoromethane, R-11 (x = 0.83), + Chlorodifluoromethane, R-22 (1 - x)

Lâle Yurttas, Raul Castro-Gomez, William J. Rogers, James C. Holste, and Kenneth R. Hall*

Chemical Engineering Department, Texas A&M University, College Station, Texas 77843

Gustavo A. Iglesias-Silva

Departamento de Ingeniería Química, Instituto Tecnológico de Celaya, Celaya Gto. C.P. 38010, Mexico

We have measured experimental liquid densities for R-11 (x = 0.83 nominal) + R-22 (1 - x) using a continuously weighed pycnometer (for liquid densities) and a semi automated, isochoric apparatus (for measurements in the vapor and liquid regions). We calculate phase boundaries from the isochoric measurements. A thermoelectric flow calorimeter was used to measure enthalpy differences in the vapor and liquid regions. The temperature range for all measurements is (230 to 425) K. The experimental pressures range up to 69 MPa for the pycnometer, 9 MPa for the isochoric apparatus, and 6.5 MPa for the calorimeter.

Introduction

Accurate density, isochoric, and enthalpy measurements for fluids are essential for developing equations of state, and they are important for the design, operation, and efficiency of industrial plants. Although production of trichlorofluoromethane (R-11) and chlorodifluoromethane (R-22) is not generally permitted because they may cause ozone depletion, experimental measurements for mixtures of R-11 and R-22 are important for understanding polar contributions to equations of state. Jacobsen et al.¹ and Wagner et al.² have reported measurements using the chlorofluoromethanes considered in this work. Meskel-Lesavre et al.³ have measured equilibrium properties in the liquid region for R-11 + R-22 mixtures.

In this work, we have used a pycnometer, an isochoric apparatus, a fast Burnett apparatus, and a calorimeter to measure the densities, phase boundaries, and enthalpy increments for the mixture R-11 (x = 0.83 nominal) + R-22 (1 - x) from 230 to 425 K. The maximum measured pressures in the pycnometer, the isochoric apparatus, and the calorimeter are (69, 9, and 6.5) MPa, respectively.

Experimental Section

Continuously Weighed Pycnometer. The pycnometer consists of a sample cell with a known volume suspended from an electronic balance. The internal volume of the cell is approximately 10 cm³. Lau et al.⁴ provide a detailed description of the apparatus. Paroscientific Inc. and Rosemount Inc. transducers calibrated using a dead weight gauge measure the pressures. The accuracy of the pressure transducers after calibration is ± 0.008 MPa. A MINCO Products Inc. four-lead platinum resistance thermometer located adjacent to the sample cell measures temperatures. Temperature control is within ± 0.002 , and the thermometer calibration is better than ± 0.005 on the IPTS-68. We report temperatures on the ITS-90. The uncertainties in the density measurements arise from errors in observables

and from the cell volume calibration. An extensive calibration with water indicates an error in the cell volume calibration of about $\pm 0.04\%$. The estimated accuracy within 95% confidence limits is^4

$$\Delta \rho = \{ (0.15)^2 + (0.0004\rho)^2 \}^{1/2}$$

or

$$\Delta \rho / \rho = \{ (0.15/\rho)^2 + (1.6 \times 10^{-7})^2 \}^{1/2}$$

where the units of ρ are kilograms per cubic meter.

Isochoric Apparatus. Yurttas et al.⁵ provide a detailed description of the apparatus. The apparatus consists of an isochoric cell made of high strength beryllium-copper alloy (Be-Cu 175). A diaphragm differential pressure transducer is in the upper part of the cell, enabling pressure measurements using a dead weight gauge. Nitrogen is the medium between the dead weight gauge and the diaphragm. The accuracy of the gauge is better than 0.01%. An Ideal-Aerosmith Inc. (model 11-11-60) mercury barometer measures atmospheric pressures better than ± 0.003 kPa. A Leeds and Northrup 25 Ω platinum resistance thermometer mounted in the isochoric cell was used to measure temperature. The thermometer (calibrated for the manufacturer) has an accuracy better than ± 0.003 K with respect to the IPTS-68. We report temperatures on the ITS-90. Because one characteristic of this apparatus is rapid temperature stabilization, Yurttas et al.⁵ use digital control for temperature acquisition. The temperature and pressure dependence of the cell volume using CO₂ as a calibrating fluid is

$$V/V_0 = 1 + (5.264 \times 10^{-5})(T - T_0) +$$

(2.727 × 10⁻¹¹)(P - P_0)

where T is in kelvin and P is in bar. The pressure coefficient is the elastic modulus of Be–Cu 175 while the temperature

Table 1.	Experimental	Temperatures	Pressures.	Densities	and Z-Factors	for R-11	(x = 0.8336)) + R-22 ((1 - x))
								/		

Т	Р	ρ		Т	Р	ρ		Т	Р	ρ		Т	Р	ρ	
K	MPa	kg∙m ⁻³	Ζ	K	MPa	kg•m ⁻³	Ζ	K	MPa	kg∙m ⁻³	Ζ	K	MPa	kg·m ⁻³	Ζ
230.009	65.2520	1686.03	2.608 47	298.144	49.0691	1542.62	1.653 97	319.987	1.0876	1380.16	0.038 18	374.977	1.8020	1206.68	0.061 74
230.018	51.6290	1672.95	2.07994	298.148	42.2238	1531.13	1.433 89	319.987	0.6907	1378.66	0.024 27	374.981	1.5927	1204.96	0.054 65
230.019	38.5126	1657.76	1.565~74	298.147	35.2949	1518.86	1.208 28	349.987	68.2312	1479.10	2.043 32	399.967	63.2135	1383.07	1.771 51
230.003	25.8603	1641.63	1.061 76	298.147	27.6336	1504.00	0.955 35	349.979	62.6770	1469.23	1.88964	399.971	56.2812	1366.92	1.595 86
230.012	12.7068	1623.40	0.527 55	298.145	21.1800	1490.62	0.738 81	349.981	56.5656	1457.80	1.718 75	399.965	49.1523	1348.85	$1.412\ 41$
230.014	3.6373	1609.58	0.152 31	298.146	14.2555	1474.84	0.502 59	349.983	49.5713	1443.89	1.520 73	399.975	41.8879	1328.37	1.222 19
230.007	3.0670	1608.63	0.128 50	298.147	7.0604	1456.68	0.252 02	349.983	42.5321	1428.61	1.318 74	399.968	35.3542	1307.71	1.047 87
230.009	2.6899	1608.01	0.112 75	298.146	3.5411	1447.03	0.127 24	349.984	35.5961	1412.26	$1.116\ 46$	399.971	28.4907	1283.14	0.860 60
230.007	2.3744	1607.47	0.099 56	298.141	3.0324	1445.59	0.109 07	349.985	27.7030	1391.72	0.881 72	399.969	21.5232	1253.75	0.665 38
230.011	2.0333	1606.97	0.085 28	298.142	2.7282	1444.75	0.098 19	349.981	20.9068	1371.66	0.675 15	399.971	14.5262	1217.33	0.462 51
230.016	1.6913	1606.39	0.070 96	298.149	2.4094	1443.80	0.086 77	349.984	14.2871	1349.36	0.469 00	399.962	7.5365	1168.49	0.249 99
230.013	1.0040	1605.02	0.042 16	298.148	2.3813	1443.01	0.085 81	349.980	7.4573	1322.34	0.249 80	399.968	5.3339	1148.20	0.180 06
230.013	0.6685	1604.47	0.028 08	298.145	2.1131	1442.22	0.076 18	349.988	3.5776	1304.32	0.121 49	399.970	3.8385	1132.14	0.131 41
269.997	62.2106	1601.52	2.230 37	298.143	1.7724	1441.18	0.063 95	349.977	3.0919	1301.88	0.105 20	399.970	3.4599	1127.62	0.118 93
270.003	55.5347	1592.86	2.001 81	298.149	1.3835	1440.04	0.049 95	349.984	2.7474	1300.08	0.093 61	399.969	3.1010	1123.20	0.107 01
269.999	48.8942	1583.80	1.772 55	298.143	1.0691	1439.09	0.038 63	349.976	2.4089	1298.31	0.082 19	399.975	2.7912	1119.29	0.096 65
269.993	41.9329	1573.88	1.529 80	298.147	0.7177	1438.05	0.025 95	349.975	2.0813	1296.63	0.071 10	399.976	2.4389	1114.58	0.084 81
269.995	35.2708	1563.81	1.295 03	298.147	0.3902	1436.97	0.014 12	349.981	1.7691	1294.97	0.060 51	399.976	2.3790	1111.44	0.082 96
270.004	27.4671	1551.32	1.016 59	319.985	66.5139	1534.42	2.100 11	349.980	1.4184	1293.05	0.048 59	424.962	65.3445	1352.80	1.762 09
269.994	21.5612	1541.21	0.803 27	319.990	62.5951	1523.41	1.990 63	349.975	1.0873	1291.23	0.037 30	424.972	61.9799	1344.58	1.681 54
270.002	14.7265	1528.68	0.553 12	319.988	56.5488	1513.51	1.810 12	374.972	67.4383	1430.60	1.948 92	424.969	56.2825	1329.70	1.544 07
269.997	7.6253	1514.59	0.289 07	319.985	49.6034	1501.44	1.600 58	374.974	63.2011	1422.20	1.837 24	424.965	49.6616	1310.90	1.381 98
269.996	3.8545	1506.62	0.146 90	319.987	42.2178	1486.74	1.375 72	374.974	56.1183	1407.35	1.64856	424.967	42.7384	1289.02	1.209 50
270.001	3.1300	1505.05	0.119 41	319.987	35.1801	1473.50	1.156 69	374.972	48.9359	1391.15	1.454 31	424.967	35.7003	1263.74	1.030 53
269.999	2.7081	1504.16	0.103 37	319.985	27.6303	1456.91	0.918 81	374.974	42.2120	1374.59	1.269 60	424.967	27.9003	1230.65	0.827 03
269.995	2.4100	1503.54	0.092 03	319.986	20.9363	1440.83	0.703 98	374.967	35.1882	1355.43	1.073 32	424.964	20.7444	1193.05	0.634 30
269.993	2.0968	1502.82	0.080 11	319.989	13.9928	1422.16	0.476~68	374.970	27.8440	1332.88	0.863 67	424.967	14.2028	1148.26	0.451 21
270.004	1.7420	1502.02	0.066 59	319.987	7.3684	1402.12	0.254 60	374.972	21.5665	1310.86	0.680 19	424.965	7.3315	1077.17	0.248 29
269.997	1.3838	1501.23	0.052 93	319.987	3.8052	1390.08	0.132 62	374.970	14.0510	1279.66	0.453 96	424.967	6.1694	1059.78	0.212 36
269.999	1.0810	1500.54	0.041 36	319.989	3.1658	1387.81	0.110 52	374.975	7.5193	1245.72	0.249 55	424.967	5.4574	1047.58	0.190 04
269.999	0.6960	1499.67	0.026 65	319.987	2.7260	1386.19	0.095 27	374.978	3.5008	1219.67	0.118 67	424.968	4.8530	1035.91	0.170 90
270.000	0.3780	1498.95	0.014 48	319.984	2.4199	1385.12	0.084~64	374.971	3.1169	1216.83	0.105 90	424.963	4.5179	1028.76	0.160 20
298.148	67.8697	1570.81	2.246 59	319.987	2.0544	1383.74	0.071 93	374.973	2.7811	1214.30	0.094 69	424.966	4.1902	1021.29	0.149 67
298.144	63.1350	1564.13	2.098 82	319.987	1.7211	1382.53	0.060 31	374.973	2.4545	1211.80	0.083 74	424.963	3.8543	1012.94	0.138 81
298.148	56.4754	1554.44	1.889 11	319.984	1.4194	1381.39	0.049 78	374.974	2.1404	1209.34	0.073 17	424.971	3.5927	1005.84	0.130 30

coefficient differs by 10% from the thermal expansion of Be-Cu 175. Nevertheless, this value agrees with the value reported by Lau.⁶

Flow Calorimeter. Castro-Gomez et al.⁷ provide the detailed design and operating characteristics for this apparatus. The apparatus measures the enthalpy increments of a fluid flowing with constant mass flow rate at an inlet temperature, T_{inlet} , and at outlet temperature, T_{outlet} , at constant pressure. The enthalpy increment is a function of the difference in power provided by an electric heater under flow and nonflow conditions,

$$H(T_{\text{inlet}}, P) - H(T_{\text{outlet}}, P) = \Delta W/\dot{m}$$

where *H* is the enthalpy, *P* is the pressure, $\Delta \dot{W}$ is the power difference, and m is the mass flow rate. Thermistors calibrated within ± 0.005 K using a platinum resistance thermometer traceable to NIST measure the inlet and outlet temperatures. Möller et al.8 have shown that longterm instabilities cause uncertainties in the calibrations up to ± 0.1 and ± 0.02 K for the outlet and inlet temperatures, respectively. Two pressure transducers (Stratham) measure pressures up to (3.5 and 35) MPa, respectively. Both transducers have a linear response to hysteresis of less than $\pm 0.2\%$ of full scale at their low-pressure limits. During runs, pressure fluctuations are less than ± 0.005 MPa. We calculate flow rate by measuring the mass of the discharged fluid as a function of time. Measurements are accurate to 0.01 g with reproducibility for the mass flow rate of 0.3%. The overall accuracy of the enthalpy differences is 0.6 $J \cdot g^{-1}$.

Fast Burnett Apparatus. Leonard⁹ provides a detailed design description of this apparatus. Its main characteristic is that it can function as a gasometer to determine highpressure compressibility factors and as a Burnett apparatus capable of rapid measurements. This apparatus

includes three cells: 10 cm³ (high-pressure cell), 1200 cm³ (low-pressure cell), and 600 cm³ (Burnett cell). The first cell is Hastelloy C-276, a corrosion-resistant nickel alloy, and the other two are aluminum 6063. The high-pressure cell uses a Transducer Technologies quartz capacitance pressured transducer calibrated with a precision of 10 kPa for pressure measurement. A differential pressure indicator (DPI) connected to a Ruska quartz bourdon tube gauge measures pressures in the Burnett cells. After calibration, the accuracy of the pressure measurements is within 0.07%. A MINCO Products Inc. four-lead platinum resistance thermometer was used to measure temperature. The thermometer calibration is better than ± 0.010 K compared to the IPTS-68.

Chemicals. We purchased purified trichlorofluoromethane (R-11) and chlorodifluoromethane (R-22) from Scientific Gas Products Inc. The stated purity for both refrigerants was 99.9%. We removed dissolved air from the samples by freezing them and reducing the pressure to 1 Pa. Analyses of the samples using gas chromatography indicated purities better than 99.95% and 99.9% for R-11 and R-22, respectively. We prepared four mixtures gravimetrically with an overall uncertainty in mole fraction of 0.1%. The final compositions of the different mixtures were as follows:

Mixture 1 (liquid density measurements):

R-11 = 0.8336, R-22 = 0.1664Mixture 2 (isochoric measurements):

R-11 = 0.8320, R-22 = 0.1680

Mixture 3 (enthalpy measurements): 0.8504 0.00 R-11

$$1 = 0.8294, R-22 = 0.1706$$

Mixture 4 (enthalpy measurements): R-11 = 0.8310, R-22 = 0.1690

Table 2.	Fast Burnett	Expansions	for R-11	(x = 0.832)	+
R-22 (1 -	- x)				

	Т	Р	Pcalc	0	
isotherm	K	MPa	MPa	kg•m ⁻³	Z
La	374 071	0 712 23	0.712.16	33 1510	0 887 58
1-a	374.971	0.523 72	0.523 72	23.5280	0.919 71
	374.979	0.381 00	0.380 93	16.6977	0.942 59
	374.980	0.275 03	0.275 03	11.8505	0.958 90
	374.977	0.197 47	0.197 60	8.4097	0.970 83
	374.976	0.141 34	0.141 41	5.9685	0.978 93
T 1.	379.977	0.100 73	0.100 94	4.2353	0.984 71
1-D	374.972	0.70575	0.703 82	32.0139	0.000 / 3
	374.978	0.377 56	0.377 28	16 5279	0.920 31
	374.975	0.272 55	0.272 34	11.7304	0.959 26
	374.975	0.195 81	0.195 60	8.3248	0.970 82
	374.974	0.140 10	0.140 03	5.9076	0.979 38
_	374.975	0.099 90	0.099 97	4.1920	0.985 36
1-c	374.967	0.775 25	0.775 11	36.5414	0.876 44
	3/4.9/2	0.572 06	0.572 19	25.9340	0.911 62
	374.901	0.417 41	0.417 34	13 0615	0.930 80
	374.975	0.216 98	0.217 12	9.2699	0.967 72
	374.974	0.155 55	0.155 55	6.5788	0.976 89
II-a	424.969	1.317 45	1.317 45	55.8677	0.859 71
	424.966	0.977 19	0.977 26	39.6298	0.899 02
	424.959	0.715 19	0.715 26	28.1109	0.927 64
	424.968	0.518 76	0.518 62	19.9414	0.948 15
	424.904	0.373 90	0.373 30	14.1459	0.902 /4
	424.903	0.191.33	0.207 93	7 1170	0.97349
	424.965	0.136 17	0.136 58	5.0490	0.986 23
II-b	424.965	1.085 99	1.085 72	44.6324	0.886 85
	424.965	0.797 38	0.797 86	31.6606	0.918 74
	424.973	0.580 12	0.580 12	22.4579	0.941 73
	424.961	0.418 92	0.418 79	15.9304	0.958 41
	424.907	0.300 89	0.300 08	11.3011 9.0157	0.909 99
	424.969	0 153 48	0 153 55	5 6866	0.984.39
II-c	424.964	0.567 37	0.567 37	21.9341	0.943 04
	424.969	0.409 41	0.409 41	15.5588	0.959 32
	424.963	0.293 85	0.293 92	11.0367	0.970 91
	424.963	0.210 50	0.210 22	7.8282	0.979 03
	424.972	0.150 03	0.150 03	5.5536	0.984 8/
	424.902	0.100 80	0.100 87	3.9390 2.7036	0.989 14
III-a	474.997	12.412.88	12,431,43	958.8677	0.422 87
	474.998	5.875 08	5.857 15	503.9422	0.379 10
	474.992	4.708 08	4.705 53	264.7859	0.579 65
	474.994	3.211 71	3.207 71	139.0887	0.752 23
	474.992	1.933 08	1.931 63	73.0924	0.861 99
	474.988	1.081 51	1.089 30	38.4124	0.924 98
III-b	474.907	0.590 07	0.393 84	20.1033 988 8223	0.95970
111-0	475.000	5.905 76	5.913 55	518.0384	0.372 33
	474.951	4.750 00	4.758 75	271.5137	0.571 73
	474.977	3.255 77	3.257 77	142.1802	0.747 38
	474.977	$1.965\ 55$	1.962 93	74.5021	0.859 41
	474.974	1.107 99	1.105 43	39.0371	0.923 68
	474.978	0.601 70	0.601 29	20.4396	0.959 56
III.c	474.980 171 021	0.322 47	0.321 23	10./116	0.9/8 18
111-0	474.981	5.920 10	5.932.03	522,5236	0.370 30
	474.977	4.786 81	4.784 75	274.8775	0.567 78
	474.975	3.296 58	3.294 24	144.5029	0.743 61
	474.975	1.995 20	1.995 48	75.9597	0.856 90
	474.985	1.126 12	1.129 15	39.9341	0.922 28

Table 3. Virial Coefficients for R-11 (x = 0.832) + R-22 (1 - x)

Т	$B_{ m m}$	$C_{ m m}$	$D_{ m m}$
K	cm ³ ·mol ⁻¹	cm ⁶ ⋅mol ⁻²	cm ⁹ ⋅mol ⁻³
375	-441.2 ± 3.1	25 585 ^a	
425	-336.2 ± 1.7	31 860 ^a	
475	-257.2 ± 2.5	$26\;425\pm10\%$	$-301\ 109$

^{*a*} Estimated using the Orbey and Vera¹² correlation.

Results and Conclusions

Experimental pressures (*P*), temperatures (*T*), mass densities (ρ), and compression factors ($Z = MP/RT\rho$) for

Figure 1. Isothermal density measurements using a pycnometer and a Burnett apparatus.

Figure 2. Experimental isochoric measurements.

mixture 1 from (230 to 425) K at pressures up 69 MPa are presented in Table 1. The value for the gas constant is R

Table 4.	Experimental Isochoric	Measurements for R-11
(x = 0.83)	2) + R - 22 (1 - x)	

	Т	Р	ρ
isochore	K	MPa	kg∙m ⁻³
Ι	234.009	2.8899	1585.673
	233.007	1.6301	1585.802
	232.008	0.3679	1585.931
TT	232.009	0.3445	1585.932
11	249.004	4.9900	1555 799
	246.505	2 1066	1555 981
	245.007	0.3637	1556.164
	248.007	3.8703	1555.797
	248.004	3.8655	1555.798
III	268.001	4.8301	1512.983
	266.504	3.3025	1513.151
	264.503	1.2021	1513.377
IV	208.003	5 2583	1/63 777
1.	289.995	2.6700	1464.085
	287.997	0.9325	1464.291
	292.996	5.2595	1463.777
V	311.989	6.7984	1419.386
	308.993	4.5086	1419.673
	305.994	2.2094	1419.961
	311 990	6 8001	1419.901
VI	331.985	5.8798	1362.326
	328.987	3.9119	1362.590
	325.989	1.9393	1362.854
	331.986	5.8905	1362.325
VII	357.978	6.8680	1298.305
	357.979	0.8080	1298.305
	351 980	3.6071	1298.784
	357.979	6.8725	1298.305
	357.981	6.8765	1298.305
VIII	385.972	7.8436	1215.660
	380.974	5.6622	1216.016
	3/3.9/3	3.4811	1216.372
	385 974	7 8459	1215 660
IX	421.966	8.9158	1110.383
	415.966	7.0159	1110.751
	409.966	5.1217	1111.120
Х	424.965	1.6172	556.221
	419.964	1.58/9	556.352
	414.900	1.5562	556 221
XI	424.964	1.2984	426.053
	414.966	1.2546	426.252
	404.967	1.2097	426.452
	424.965	1.2994	426.053
XII	424.965	0.9672	303.998
	404.908	0.9097	304.283
	424 964	0.8643	303 998
XIII	424.965	0.6621	200.808
	399.968	0.6170	201.042
	374.975	0.5690	201.277
VIN/	424.964	0.6637	200.808
XIV	424.966	0.4448	131.354
	309.971 349 989	0.3997	131.309
	424.963	0.4453	131.354
XV	429.962	2.0008	715.595
	429.961	2.0006	715.595
	424.963	1.9604	715.763
	419.964	1.9240	715.930
	429.904	2.0024	/10.090

= 8.314 51 J·mol⁻¹·K⁻¹, and the molar masses (*M*) of R-11 and R-22 are (137.369 and 86.468) g·mol⁻¹, respectively. Table 2 contains Burnett data for three isotherms: (375, 425, and 475) K. The first two isotherms come from the fast Burnett apparatus described here while the last isotherm comes from a conventional Burnett apparatus described by Liu et al.¹⁰ Hwang et al.¹¹ have described the measurement and calculation techniques. Figure 1 presents isothermal density measurements using the pycnometer and Burnett apparatuses. Table 3 contains the second virial

Figure 3. Experimental P-T measurements: \bigcirc , this work—bubble point measurements; \bullet , this work—dew point measurements; \triangle , Meskel-Lesavre et al.³

Table 5. Phase Boundary Conditions for R-11 (x = 0.832) + R-22 (1 - x)

Т	Р	ρ	Т	Р	ρ
K	MPa	kg∙m ⁻³	K	MPa	kg∙m ⁻³
231.763	0.0595	1585.962	401.542	2.4568	1111.637
244.749	0.0814	1556.195	405.696 ^a	1.8134	716.4095
263.398	0.1361	1513.501	393.749 ^a	1.4330	557.0352
287.214	0.2583	1464.372	380.520 ^a	1.1016	426.9404
303.611	0.3876	1420.189	366.279 ^a	0.7952	304.8341
323.973	0.6162	1363.031	348.513 ^a	0.5202	201.5268
347.156	0.9855	1299.169	330.940 ^a	0.3297	131.9332
371.497	1.5271	1216.691			

^a Vapor phase.

Table 6. Experimental Enthalpy Increments for R-11 + R-22

T_{inlet}	$T_{\rm outlet}$	Р	ΔH	$T_{ m inlet}$	$T_{\rm outlet}$	Р	ΔH
K	K	MPa	$J \cdot g^{-1}$	K	K	MPa	J•g ⁻¹
			$X_{R11} =$	0.8294			
230.291	298.155	6.408	-58.99	390.656	298.186	6.528	84.18
231.342	298.157	6.412	-57.17	393.650	298.200	6.514	88.00
239.418	298.154	6.473	-50.33	416.865	298.199	6.490	110.50
271.589	298.150	6.512	-23.07	229.692	298.153	4.423	-58.16
341.008	298.163	6.708	38.77	269.756	298.149	4.423	-23.68
361.614	298.164	6.518	57.56	228.576	298.145	3.030	-59.61
365.572	298.174	6.498	62.38	271.854	298.148	3.458	-22.78
			$X_{R11} =$	0.8310			
390.987	298.215	2.667	93.64	389.703	298.247	0.751	225.24^{a}
392.502	298.207	3.354	94.11	390.399	298.241	1.270	216.70 ^a
465.649	298.238	4.721	224.21	404.861	298.237	0.737	237.09 ^a
471.080	298.245	5.498	209.40	405.894	298.237	1.251	232.59^{a}
472.788	298.250	6.399	188.20	456.531	298.233	3.200	245.73 ^a
21/							

^a Vapor phase.

coefficients extracted from the data and the third virial coefficients obtained from Orbey and Vera.¹² Table 4 and Figure 2 present the isochoric measurements including the corresponding densities. We assign densities to each isochore using the pycnometer density measurements in the

liquid phase and using a virial equation of state in the vapor phase at 425 K. We determine phase boundaries by finding the discontinuities in the slopes of the isochores. Table 5 has the P-T values at the phase boundaries, and Figure 3 shows the phase envelope from this work along with the results for a similar mixture ($x_{R11} = 0.8432$) from Meskel-Lesevre et al.³ The latter saturated densities agree with our values within 1%, which is within the uncertainty claimed by those authors. Table 6 contains the experimental enthalpy increments together with the inlet and outlet temperatures for mixtures 3 and 4. These measurements are suitable for testing and developing new equations of state.

Literature Cited

- (1) Jacobsen, R. T.; Penoncello, S. G.; Lemmon, E. W. A Fundamental Equation for Trichlorofluoromethane (R-11). Fluid Phase Equilib. **1992**, 80, 45-56.
- (2)Wagner, W.; Marx, V.; Pruss, A. Anew Equation of State for Chlorodifluoromethane (R22) Covering the Entire Fluid Region from 116 K to 550 K at Pressures up to 200 MPa. Int. J. Refrig. 1993, 16, 373-389.
- (3) Meskel-Lesavre, M.; Richon, D.; Renon, H. Bubble Pressures and Saturated Liquid Molar Volumes of Trichlorofluoromethane-Chlorodifluoromethane Mixtures. Fluid Phase Equilib. 1982, 8, 37 - 53
- (4) Lau, W. R.; Hwang, C.-A.; Brugge, H. B.; Iglesias-Silva, G. A.; Duarte-Garza, H. A.; Rogers, W. J.; Hall, K. R.; Holste, J. C.; Gammon, B. E.; Marsh, K. N. A Continuously Weighed Pycnometer for Measuring Fluid Properties. J. Chem. Eng. Data 1997, 42, 738-744.

- (5) Yurttas, L.; Holste, J. C.; Hall, K. R.; Gammon, B. E.; Marsh, K. N. Semi automated Isochoric Apparatus for *p-V-T* and Phase Equilibrium Studies. *J. Chem. Eng. Data* **1994**, *39*, 418–423.
- Lau, W. R. A Continuously Weighed Pycnometer Providing Densities for Carbon Dioxide + Ethane Mixtures Between 240 (6)Densities for Carbon Dioxide + Enfance Flactures Decision 212 and 350 K at Pressures up to 35 MPa. Ph.D. Dissertation, Texas A&M University, College Station, TX, 1986.
 (7) Castro-Gomez, R. C.; Hall, K. R.; Holste, J. C.; Gammon, B. E.; Marsh, K. N. A Thermoelectric Flow Enthalpy-increment Calobian Content in the Characteristic sector 1000, 22 269–278.
- rimeter. *J. Chem. Thermodyn.* **1990**, *22*, 269–278. Möller, D.; Gammon, B. E.; Marsh, K. N.; Hall, K. R.; Holste, J.
- C. Enthalpy increment Measurements from Flow Calorimetry of CO_2 and of { $xCO_2+(1-x)C_2H_6$ } from Pressures of 15 MPa to 18 MPa Between the Temperatures 230 K and 350 K. J. Chem. Thermodyn. 1993, 25, 1273-1279.
- (9)Leonard, D. R. A New Apparatus for the Determination of Compressibility Factors for Reactive Fluids. Ph.D. Dissertation, Texas A&M University, College Station, TX, 1988
- (10) Liu, C.-H.; Bailey, D. M.; Holste, J. C.; Eubank, P. T.; Hall, K. R. Energy functions for H2S. Hydrocarbon Process. 1986, 65, 41-
- (11) Hwang, C.-A.; Simon, P. P.; Hou, H.; Hall, K. R.; Holste, J. C.; Marsh, K. N. Burnett and Pyncnometric (*p*, *V*_m, *T*) Measurements for Natural Gas Mixtures. *J. Chem. Thermodyn.* **1997**, *29*, 1455– 1472.
- (12) Orbey, H.; Vera, J. H. Correlation for the Third Virial Coefficient Using T_C , P_C , and ω as Parameters. AIChE J. 1983, 29, 107– 112.

Received for review January 6, 2003. Accepted July 28, 2003. The Texas Engineering Experiment Station, Instituto Tecnológico de Celaya, and CONACyT have provided financial support for this work.

JE0301040